8 resultados para Bovine herpesvirus 5

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1975, a wild white-tailed deer infected with bovine tuberculosis was shot in the northeastern Lower Peninsula, Michigan. The shooting of a second infected deer in the same area in 1994 triggered ongoing disease surveillance in the region. By 2002, bovine tuberculosis had been confirmed in 12 Michigan counties: from 449 deer; two elk; 41 non-cervid wildlife; one captive cervid facility and 28 cattle herds. We analyzed geographic spread of disease since the surveillance began and investigated factors influencing the prevalence of disease within the infected area. These analyses reveal that 78 percent of tuberculous deer came from within a 1560 km2 'core' area, within which the prevalence of apparent disease averaged 2.5 percent. Prevalence declined dramatically outside of the core and was an order of magnitude lower 30 km from its boundary. This prevalence gradient was highly significant (P<0.0001) and did not alter over the 6 year surveillance period (P= 0.98). Within the core, deer density and supplemental feeding by hunters were positively and independently correlated with tuberculosis prevalence in deer. Together, these two factors explained 55 percent of the variation in prevalence. We conclude that bovine tuberculosis was already well established in the deer population in 1994, that the infected area has not expanded significantly since that time, and that deer over-abundance and food supplementation have both contributed to ongoing transmission of disease. Managers are currently enforcing prohibitions on deer feeding in the core and are working to lower deer numbers there through increased hunting pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine tuberculosis (Mycobacterium bovis) was discovered in northern Michigan white-tailed deer (Odocoileus virginianus) in 1994, and has been known to exist in Michigan cattle herds since 1998. Despite efforts to eradicate the disease in cattle, infection and re-infection of farms continues to occur, suggesting transmission among cattle, deer, or other wildlife reservoirs. The goals of this study were to document wildlife activity on farms and evaluate the possible role wildlife play in the ecology of bovine tuberculosis (TB) in Michigan. Visual observations were conducted on farms in a 5-county area of northern Michigan to document direct wildlife-cattle interactions (i.e., <5 m between individuals) and indirect interactions (e.g., wildlife visitations to food stores and areas accessible to cattle). Observations were conducted primarily during evening and early morning hours between January and August, 2002, and on a 24-hour schedule between January and August, 2003. Total observation time accumulated through the duration of the study was 1,780 hours. Results indicated that direct interaction between deer and cattle was a rare event; no direct interactions were observed during the first year, and only one direct interaction was observed during the second year. However, through the duration of the study 21 direct interactions were documented between cattle and turkey, and 11 direct interactions were documented between cattle and mammals other than deer. In total, 273 indirect interactions by deer, 112 indirect interactions by turkeys, and 248 indirect interactions by mammals other than deer were observed during the 2 field seasons combined. These data supported the hypothesis that indirect interactions among wildlife and cattle are a potential mechanism for the transmission of TB in Michigan. If direct interactions were important mechanisms of TB transmission to cattle in northern Michigan, my data suggested that feral cats were the species of most concern, even though there were more observations between turkey and cattle. Unlike cats, which can become infected with and transmit TB, there is no evidence for such pathogenesis in turkey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine tuberculosis (TB) is a serious disease with animal health, public health, and international trade consequences. The cooperative Federal-State-industry effort to eradicate bovine TB from cattle in the United States has made significant progress since the program’s inception in 1917. However, the goal of eradication remains elusive. This proposed action plan presents Veterinary Services’ (VS’) current thinking about changes we are considering for the TB program to address our current challenges. This action plan will: 1. Reduce the introduction of TB into the U.S. national herd from imported animals and wildlife by: o Applying additional requirements to cattle imports from Mexico o Enhancing efforts to mitigate risks from wildlife 2. Enhance TB surveillance by: o Crafting a comprehensive national surveillance plan o Accelerating diagnostic test development to support surveillance 3. Increase options for managing TB-affected herds by: o Conducting epidemiological investigations and assessing individual herd risk o Applying whole-herd depopulation judiciously and developing alternative control strategies o Applying animal identification (ID) standards to meet animal ID needs 4. Modernize the regulatory framework to allow VS to focus resources where the disease exists 5. Transition the TB program from a State classification system to a science-based zoning approach to address disease risk To succeed, this new approach will require VS’ continued partnership with State animal health and wildlife officials, other Federal agencies, industry, international partners, academia, and other stakeholders. Successful partnerships will allow us to use available resources efficiently to achieve program objectives and protect our nation’s herd. Implementation of the VS proposed action plan will benefit Federal and State animal health officials, the regulated industries, and producers by allowing a more rapid response that employs up-to-date science and can adapt rapidly to changing situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 4.5 yr-old male white-tailed deer (Odocoileus virginianus) killed by a hunter during the 1994 firearm hunting season in northeastern Michigan (USA) had lesions suggestive of tuberculosis and was positive on culture for Mycobacterium bovis the causative agent for bovine tuberculosis. Subsequently, a survey of 354 hunter-harvested white-tailed deer for tuberculosis was conducted in this area from 15 November 1995 through 5 January 1996. Heads and/or lungs from deer were examined grossly and microscopically for lesions suggestive of bovine tuberculosis. Gross lesions suggestive of tuberculosis were seen in 15 deer. Tissues from 16 deer had acid-fast bacilli on histological examination and in 12 cases mycobacterial isolates from lymph nodes and/or lungs were identified as M. bovis. In addition, lymph nodes from 12 deer (11 females and 1 male) without gross or microscopic lesions were pooled into 1 sample from which M. bovis was cultured. Although more male (9) than female (3) deer had bovine tuberculosis infections, this difference was not statistically significant. Mycobacterium bovis culture positive deer ranged in age from 1.5 to 5.5 yr with a mean of 2.7 yr (median 2.5 yr) for males and 3.2 yr (median 3.5 yr) for females. This appears to be the first epidemic occurrence of M. bovis in free-ranging cervids in North America. A combination of environmental (high deer density and poor quality habit) and management-related factors (extensive supplemental feeding) may be responsible for this epizootic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To compare the pathogenesis of human genotype 1 (HuGl) and bovine genotype 2 (BoG2) Cryptosporidium parvum, neonatal gnotobiotic pigs were given 1-10 HuGl or BoG2 oocysts. The prepatent and patent periods were significantly longer for HuGl than for BoG2 C. parvum (prepatent, 8.6 vs. 5.6 days; patent, 16.6 vs. 10.3 days). BoG2-infected pigs developed signif- icantly more severe disease than did HuGl-infected pigs. BoG2 parasites were seen micro- scopically throughout the intestines during the prepatent and patent periods. HuGl parasites were only detected during the patent period in the ileum and colon but colonized the mucosal surface in significantly larger numbers than did BoG2. Moderate-to-severe villus/mucosal attenuation with lymphoid hyperplasia was seen throughout the intestines of BoG2-infected pigs, whereas lesions in HuGl-infected pigs were mild to moderate and restricted to the ileum and colon. These findings provide additional support for the hypothesis that human and bovine C. parvum genotypes may be separate species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the efficacy of oral and parenteral Mycobacterium bovis bacille Calmette-Guerin Danish strain 1331 (BCG) in its ability to protect white-tailed deer (Odocoileus virginianus) against disease caused by M. bovis infection. Twenty-two white-tailed deer were divided into four groups. One group (n=5) received 109 colony-forming units (cfu) BCG via a lipid-formulated oral bait; one group (n=5) received 109 cfu BCG in culture directly to the oropharynx, one group (n=6) was vaccinated with 106 cfu BCG subcutaneously, and one group served as a control and received culture media directly to the oropharynx (n=6). All animals were challenged 3 mo after vaccination. Five months postchallenge the animals were examined for lesions. Results indicate that both oral forms of BCG and parenterally administerd BCG offered significant protection against M. bovis challenge as compared to controls. This study suggests that oral BCG vaccination may be a feasible means of controlling bovine tuberculosis in wild white-tailed deer populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine viral diarrhea virus (BVDV) is a member of the genus Pestivirus, Family Flaviviridae. The virus can infect many species of animals of the order Artiodactyla. The BVDV genome encodes an auto protease, Npro, that degrades interferon regulatory factor-3 (IRF-3) reducing type I interferon (IFN-I) production from host cells. Bovine respiratory syncytial virus (BRSV) is a member of the genus Pneumovirus, Family Paramyxoviridae. Concurrent infection with BVDV and BRSV causes more severe respiratory and enteric disease than infection with either virus alone. Our hypothesis was that Npro modulates the innate immune responses to BVDV infection and enhances replication of BVDV or BRSV co-infection. The noncytopathic BVDV2 viruses NY93/c N- Npro 18 EGFP (a mutant with modified Npro fused with enhanced green fluorescent protein), NY93 infectious clone (NY93/c), wild-type NY93-BVDV2 (NY93-wt), and BRSV were evaluated in this study. The objectives of this study were: (1) to characterize the replication kinetics and IFN-I induction in Madin-Darby bovine kidney (MDBK) cells following infection with each of the BVDV isolates, and (2) to characterize the influence of BVDV-mediated IFN-I antagonism on enhancement of BRSV replication in bovine turbinate (BT) cells. NY93/c N- Npro 18 EGFP replicated 0.4 – 1.6 TCID50 logs lower than NY93-wt in MDBK cells. NY93/c N- Npro 18 EGFP-infected MDBK cells synthesized IFN-I significantly higher than NY93/c- and NY93-wt-infected MDBK cells. BT cells co-infected with NY93/c N- Npro 18 EGFP/BRSV or NY93-wt/BRSV were evaluated to determine the effects of co-infection on BRSV replication and IFN-I induction in BT cells. BRSV RNA levels in NY93-wt/BRSV co-infected BT cells were 2.49, 2.79, and 2.89 copy number logs significantly greater than in NY93/c N- Npro 18 EGFP/BRSV co-infected BT cells on days 5, 7, and 9 post-infection, respectively. BVDV RNA levels in NY93/c N- Npro 18 EGFP-infected BT cells were 1.64 – 4.38 copy number logs lower than in NY93-wt-infected BT cells. NY93/c N- Npro 18 EGFP single and co-infected BT cells synthesized IFN-I significantly higher than NY93-wt single and co-infected BT cells. In summary, these findings suggest: (1) NY93/c N- Npro 18 EGFP BVDV2 induced higher levels of IFN-I than BVDV2-wt and may be useful as a safer, replicating BVDV vaccine, and (2) Enhancement of BRSV infection by BVDV co-infection is mediated by antagonism of IFN-I.